Line graphs: Their maximum nullities and zero forcing numbers
نویسندگان
چکیده
منابع مشابه
Minimum Rank, Maximum Nullity, and Zero Forcing of Graphs
Combinatorial matrix theory, which involves connections between linear algebra, graph theory, and combinatorics, is a vital area and dynamic area of research, with applications to fields such as biology, chemistry, economics, and computer engineering. One area generating considerable interest recently is the study of the minimum rank of matrices associated with graphs. Let F be any field. For a...
متن کاملOn the zero forcing number of some Cayley graphs
Let Γa be a graph whose each vertex is colored either white or black. If u is a black vertex of Γ such that exactly one neighbor v of u is white, then u changes the color of v to black. A zero forcing set for a Γ graph is a subset of vertices Zsubseteq V(Γ) such that if initially the vertices in Z are colored black and the remaining vertices are colored white, then Z changes the col...
متن کاملZero forcing number of graphs
A subset S of initially infected vertices of a graph G is called forcing if we can infect the entire graph by iteratively applying the following process. At each step, any infected vertex which has a unique uninfected neighbour, infects this neighbour. The forcing number of G is the minimum cardinality of a forcing set in G. In the present paper, we study the forcing number of various classes o...
متن کاملThe Zero Forcing Number of Circulant Graphs
The zero forcing number of a graph G is the cardinality of the smallest subset of the vertices of G that forces the entire graph using a color change rule. This paper presents some basic properties of circulant graphs and later investigates zero forcing numbers of circulant graphs of the form C[n, {s, t}], while also giving attention to propagation time for specific zero forcing sets.
متن کاملZero forcing propagation time on oriented graphs
Zero forcing is an iterative coloring procedure on a graph that starts by initially coloring vertices white and blue and then repeatedly applies the following rule: if any blue vertex has a unique (out-)neighbor that is colored white, then that neighbor is forced to change color from white to blue. An initial set of blue vertices that can force the entire graph to blue is called a zero forcing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 2016
ISSN: 0011-4642,1572-9141
DOI: 10.1007/s10587-016-0290-x